Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA.
نویسندگان
چکیده
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We have identified the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a factor that binds to the FGF-2 5'-leader RNA and that also complements defective FGF-2 translation in vitro in rabbit reticulocyte lysate. Recombinant hnRNP A1 stimulates in vitro translation at the four IRES-dependent initiation codons but has no effect on the cap-dependent initiation codon. Consistent with a role of hnRNP A1 in the control of alternative initiation of translation, short interfering RNA-mediated knock down of hnRNP A1 specifically inhibits translation at the four IRES-dependent initiation codons. Furthermore, hnRNP A1 binds to the FGF-2 IRES, implicating this interaction in the control of alternative initiation of translation.
منابع مشابه
IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse.
The mRNA coding for FGF-2 (fibroblast growth factor 2), a major angiogenic factor, is translated by an IRES (internal ribosome entry site)-dependent mechanism. We have studied the role of the IRES in the regulation of FGF-2 expression in vivo, under pathophysiological conditions, by creating transgenic mice lines expressing bioluminescent bicistronic transgenes. Analysis of FGF-2 IRES activity ...
متن کاملSubcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation.
Translation of the X-linked inhibitor of apoptosis (XIAP) proceeds by internal ribosome entry site (IRES)-mediated initiation, a process that is physiologically important because XIAP expression is essential for cell survival under conditions of compromised cap-dependent translation, such as cellular stress. The regulation of internal initiation requires the interaction of IRES trans-acting fac...
متن کاملA single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons.
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analys...
متن کاملAlternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes.
Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated p...
متن کاملhnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress.
A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 6 شماره
صفحات -
تاریخ انتشار 2005